

Chapter 2

Atoms, Elements, and Minerals

A mineral is:

- Solid,
- crystalline,
- has a specific chemical composition,
- and forms through geologic processes (naturally occurring)

Mineral

- Naturally occurring
 Not synthetic, artificial
- Solid crystalline substance
 - Neither liquids nor gases
 - Atoms arranged in orderly, repeating, 3-D array
- Generally inorganic
- With a specific chemical composition
 Fixed or within a range, limited by crystal structure

Non-Crystalline Materials

Gases

- Organic materials
- Aqueous solutions
- Melts
- Amorphous solids ("without form"—noncrystalline)
 - □Glass, opal

A rock is:

- Naturally formed
- Consolidated material
- Made of grains of one or more minerals

Rocks vs. Minerals

A mineral

is a crystalline solid

- □ is formed by *natural* geological processes
 - in the **geo**sphere (most minerals)
 - in the hydrosphere (e.g., salt)
 - in the **bio**sphere (e.g., calcite)
 - In the atmosphere (e.g., water ice)
- has a specific chemical composition
- has consistent physical and chemical properties
- A crystal
 - □ is a mineral with *"shape" (form)* properties

A rock

□ is a composite of **one or more minerals**

Fig. 2.1, pg. 26

in crystalline structure

of crystalline structure

An atom is:

- Electrons

- Smallest possible particle of an element that retains the properties of that element
- Determined by number of protons

3 most important subatomic particles

- Protons contributes mass and a single positive electrical charge to an atom
- Neutrons contributes mass to an atom and is electrically neutral
- Electrons single, negative electrical charge that contributes virtually no mass to an atom

Atomic Structure

Nucleus of an atom

- has Protons (+1 charge) determines the element
- may have Neutrons (0 charge)
- □ is a *tiny* volume at atom's center
- □ is nearly *all of the atom's mass*
- Electrons (-1 charge)
 - □ orbit **Nucleus** in discrete shells (energy levels)
 - Shells are most of volume of an atom
 - only a tiny fraction of the atom's mass
- Atoms
 - Neutral
 - Number of electrons and protons equal
 - Ions
 - Number of electrons and protons unequal
- Chemical (vs. nuclear) reactions
 - involve only outermost shell (valence) electrons

A Helium

Atomic number

number of protons in an atomdetermine atom's characteristics

for outer electrons lost to un full outer	ndenc most to be cover shell	y e r										Tenden electror tron sh or loss	cy to fi n shell l aring ar	ll outer by elec- nd gain ctrons	Strong ency to electro make outer	tend- o gain ins to full shell	Noble gases outer shells filled; no endency to gain or lose electrons
LI 3 Bo	D: 4											B 5	C 6	N 7	0 8	F 9	Ne la
uter a- Na II M	g 12											Room AJ 13	Cathan Si 14	Nitrogen P 15	Oxygee S 16	Fluentin Cl 17	Near Ar 18
Socker Mar			Т	endend	y to lo	se elec	trons f	rom ini	ner she	lls		Aberican	Shire	Phone and	Sile	Chinese	A
K 19 G	a 20	Sc 21	Ti 22	V 23	Cr 14	Mn 25	Fe 26	Co 37	Ni 2i	Cu 29	Zn 30	Ga Ji	Ge 32	As 33	Se 14	Br 35	Kr 34
Pounies C	Jan	Scandum	Tittenen	Varadure	Chronian	Margarete	licen	Cobalt	Nickel	Сорряз	Zire	Gallan	Gontaut	Arsonic	Selenian	Brozine	Krypson
KD 37 SF		T : 39	Zr 49	ND 41	Mo 42	16 41	Ru 44	Rh 45	Pd 46	Ag 47	CG 49	lin 49	Sn So	SD 51	1e 52	1. 53	Xe 54
Rubedure Skr	-	Yvorkere	Zirconom	Nobeliam	Neybderam	Technistum	Rutherson	Rhodum	Palladium	Siver	Codwarro	indiam	Ter	Antimory	Telurum	ladine	Xenon
Cs 55 Ba	1 56	La 57	Hf 72	Ta 73	W 74	Re 75	Os 76	lr 77	Pt 78	Au 79	Hg 80	TI si	Pb 82	Ві вз	Po 94	At 85	Rn 👪
Cickury B	ariun	Lansharum	Halmura	Tanalas	Turgmen	Thesam	Orean	iridum	Pasinan	Gole	Mercury	Ttalian	Lost	Servety	Polonium	Anuster	Radon
Farmer R	28 an	Chemical symbol				-Mg 12 Hageesan	Ato num Elen nam	mic iber nent e		Ea	Element Ibundar n Earth	ts of maj nce 's crust	or		Eleme abund geolo	ents of dance b gic imp	lesser out of major oortance

Atomic mass controlled by:

- Number of protons
- Plus
- Number of neutrons

lon =

Electrically charge atom or group of atoms
 Ex. = SO₄^{-2,}
 Ex. CO₃⁻²
 Ex. Cl^{-,} Na⁺

Types of ions

Cations +

Anions -

Chemical reactions construct materials

electrons

lsotopes =

- atoms of the same element that have different numbers of neutrons, but the same number of protons
- Examples = O 16 (8 neutrons), O 18 (10 neutrons)
- Unstable isotopes decay to different element radioactivity geiger counter

Carbon-12 (6P | 6N) Atomic weight 5 | 2

2 • Electron (atomic mass 5 0)

Carbon-14 (6P I 8N) Atomic weight 5 14

Atomic make-up

Electrons key for chemistry

Isotopes

Elements

- determined by the number of protons in the nucleus !
 - Carbon (C) = 6 protons Always!
 - Sodium (Na) = 11 protons Always!
 - Chlorine (CI) = 17 protons Always!
- Number of neutrons can vary for an Element

□ Isotopes

- Carbon-12 ... 6 protons, 6 neutrons
- Carbon-13 ... 6 protons, 7 neutrons
- Carbon-14 ... 6 protons, 8 neutrons

Isotopes are a # change in neutrons.. in the nucleus!

Isotopes

Can only have a limited number o
 additional neutrons in the nucleus
 isotopes for each Element
 heavier (larger) Elements have more
 room in the nucleus

- □ isotopes (generally)
- Isotope's nucleus may be
 - □ Stable

- all of their protons and neutrons retained over time
- can be used to track climate changes
- □ Unstable or radioactive
 - spontaneously lose particles from their nuclei (fission!)
 - proton loss means the Isotope turns into a new Element!
 - major source of Earth's heat!

2 common types of atomic bonds

- Ionic bond bonding due to the attraction between positivgely charged ions and negatively charged ions – opposites attract
- Covalent bond bonding due to the sharing of electrons by adjacent atoms

Chemical Bonds: Important in both minerals and fluids

Types and characteristics
 lonic
 Covalent
 Metallic
 Van der Waals
 Hydrogen

Ionic Bonds

- Donating/accepting electrons from one atom (element) to another atom (element)
- Typical of salts
- Generally very soluble
- Dominant type of bonds in mineral structures
- On left side of Periodic Table—lose electrons

Covalent Bonds

- Localized sharing electrons (e.g., diamond)
- Generally stronger than ionic bonds (minerals less soluble)

Metallic Bonds

- Also shared electrons but delocalized—not tied to a particular site
- A kind of covalent bond
- Important for thermal and electrical conductivity
- Sheen—absorb and re-emit light by reflection

Mineral structures & properties

- Crystal structure of halite (NaCl, common salt)
- Octahedron, 6 sides in 3-D; 6 Cl about 1 Na

Halite, a chloride

Major classes of minerals

- Elements
- Sulfides S
- Oxides O
- Carbonates CO₃
- Sulfates SO₄
- Phosphates PO₄
- Silicates SiO₄

Key Rock-forming Minerals*

Group	Mineral group / Formula type	Rock type
	Hematite — Fe_2O_3	Sedimentary
	Magnetite – Fe_3O_4	Igneous
Non-	Halite — NaCl	Chemical sedimentary
silicates	Calcite – CaCO ₃	Chemical sedimentary & metamorphic
	Dolomite — $CaMg(CO_3)_2$	Chemical sedimentary & metamorphic
	Gypsum - CaSO ₄ .2H ₂ O	Chemical sedimentary
	Quartz – framework (SiO ₂)	Clastic sedimentary & igneous
	Feldspars — framework (Na-K-Ca-Al)	Clastic sedimentary & igneous
	Micas (muscovite, biotite) - sheet (K-AI-Fe-Mg)	Metamorphic & igneous
Cilicates	Clay group — sheet (K-Na-AI-Fe-Mg)	Sedimentary
Silicates	Amphiboles- double chain (Na-Ca-Mg-Fe-Al)	Igneous and metamorphic
	Pyroxenes — single chain (Ca-Mg-Fe-Na-AI)	Igneous and metamorphic
	Olivine — isolated SiO ₄ (Mg-Fe)	Igneous and metamorphic
	Garnet — isolated SiO ₄ (Ca-Mg-Fe-AI)	Metamorphic

* What is most important:

(1) the mineral groups,

(2) their systematic distribution in different rock types,

(3) the differences in composition and structure type

Non-Silicate Minerals

Carbonates

 \Box Contain **CO₃** in their structures (e.g., calcite - CaCO₃)

Sulfates

 \Box Contain **SO₄** in their structures (e.g., gypsum - CaSO₄· 2H₂O)

Sulfides

 \Box Contain **S (but no O)** in their structures (e.g., pyrite - FeS₂)

Oxides

Contain O, but not bonded to Si, C or S (e.g., hematite -Fe₂O₃)

Native elements

Composed entirely of one element (e.g., diamond - C; gold - Au)

The Periodic Table of the Elements

Light	Metals							110.00	6 mai	onis							
IA	ΠA					A	Appe	ndix	D, pg	g. 549		13	N	onmeta	ls		VIII A
1.0080	1.1											IIIA	IV A	VA	VIA	VIIA	He
3 Li 6.939	4 Be 9.012					Heavy	Metal	8				5 B 10.81	6 C 12.011	7 N 14.007	8 0 15.9994	9 F 18.998	10 Ne 20.183
11 Na	12 Mø	-			-	_	-	WITT I	-			13	14	15	16	17	18
22,990	24.31	III B	IV B	VВ	VIB	VII B	-	VIII E		IB	пв	26.98	Si 28.09	P 30.974	S 32.064	CI 35.453	Ar 39.948
19 K 39,102	20 Ca 40.08	21 Sc 44.96	22 TI 47.90	23 V 50.94	- 24 Cr 52.00	25 Mn 54.94	26 Fe 55.85	27 .Co 58.93	28 Ni 58.71	29 Cu 63.54	30 Zn 65.37	31 Ga 69.72	32 Ge 72.59	33 As 74.92	34 Se 78.96	35 Br 79,909	36 Kr 83,80
37 Rb 85.47	38 Sr 87.62	39 Y 88.01	40 Zr 91.22	41 Nb .92.91	42 Mo 95.94	43 Tc (99)	44 Ru 101.1	45 Rh 102.90	46 Pd 106.4	47 Ag 107.870	48 Cd	49 In 114.82	50 Sn	51 Sb	52 Te	53 I	54 Xe
55 Cs 132.91	56 Ba 137.34	57 TO 71	72 Hf 178.49	73 Ta 180.95	74 W 183.85	75 Re 186.2	76 Os 190.2	77 Ir 192.2	78 Pt	79 Au 197.0	80 Hg	81 TI 204.37	82 Pb	83 Bi	84 Po	85 At	86 Rn
87 Fr (223)	88 Ra 226.05	89 то 103													(===)	(210)	()
Lantiser	uanide ies	57 La 138,91	58 Ce 140.12	59 Pr 140.91	60 Nd 144.24	61 Pm (147)	62 Sm 150.35	63 Eu 151.96	64 Gd 157.25	65 Tb 158.92	66 Dy 162.50	67 Ho 164.93	68 Er 167.26	69 Tm 168.93	70 Yb 173.04	71 Lu 174.97	
Acti	nide - ies	89 Ac (227)	90 Th 232.04	91 Pa (231)	92 U 238.05	93 Np (237)	94 Рµ (242)	95 Am (243)	96 Cm (247)	97 Bk (249)	98 Cf (251)	99 Es (254)	100 Fm (253)	101 Md (256)	102 No (254)	103 Lw (257)	

Alkalies & Alkaline earths

Key Parts of the Periodic Table

showing most important elements, their atomic and ionic radii, and some of their abundances in the crust of the Earth

Network Formers & Anions

Transition Metals

Relative size and charge are key features charge balance and "coordination number"

Non-silicate mineral groups

Mineral Type	Composition	Examples	Uses
Carbonates	Metallic ion(s) plus carbonate ion complex (CO_3^{2-})	Calcite (CaCO ₃)	Cement
		Dolomite (CaMg(CO ₃) ₂)	Cement
Oxides	Metallic ion(s) plus oxygen ion (O ²⁻)	Hematite (Fe ₂ O ₃)	Iron ore
		Magnetite (Fe ₃ O ₄)	Iron ore
		Corundum (Al ₂ O ₃)	Gems, abrasives
		Cassiterite (SnO ₂)	Tin ore
		Rutile (TiO ₂)	Titanium ore
		Ilmenite (FeTiO ₃)	Titanium ore
		Uraninite (UO ₂)	Uranium ore
Sulfides	Metallic ion(s) plus sulfur (S ²⁻)	Galena (PbS)	Lead ore
		Pyrite (FeS ₂)	Sulfur ore
		Cinnabar (HgS)	Mercury ore
		Sphalerite (ZnS)	Zinc ore
		Molybdenite (MoS ₂)	Molybdenum ore
		Chalcopyrite (CuFeS ₂)	Copper ore
Sulfates	Metallic ion(s) plus sulfate ion (SO ₄ ²⁻)	Gypsum (CaSO ₄ ·2H ₂ O)	Plaster
		Anhydrite (CaSO ₄)	Plaster
		Barite (BaSO ₄)	Drilling mud
Native elements	Minerals consisting of a single element	Gold (Au)	Jewelry, coins, electronics
		Silver (Ag)	Jewelry, coins, photography
		Platinum (Pt)	Jewelry, catalyst for gasoline production
		Diamond (C)	Jewelry, drill bits, cutting tools
Apatite: $Ca_5(PO_4)_3F$ — a phosphate

- Tetrahedral PO₄-³ group is the anion in phosphates
- Location of most phosphorous in rocks (an essential nutrient)
- Where is most of the phosphorous in this room? (why are calcium and fluoride important?)

Ions Cluster as "Polyhedra"

- Opposite charges attract
 - # that go around central ion depends on relative size
 - Does the central ion have + charge or charge? Why?
- Examine the tetrahedron next (coordination # = 4) 38

Making a crystal from polyhedra

 Linking polyhedral units by sharing of some or all corners builds a regularly repeating 3-D structure a crystal structure

Relationship of crystal form to structure

A cube-octahedron (as might be seen in galena or fluorite) showing external morphology related to unit cells

 Here, galena / halite are built up from the elementary repeat units of the crystal — note cube and octahedral faces

O Si Al Fe Ca Na K Mg Ti

Copyright @ McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Table 2.1

Crustal Abundance of Elements

Element	Symbol	Percentage by Weight	Percentage by Volume	Percentage of Atoms
-				
Oxygen	0	46.6	93.8	60.5
Silicon	Si	27.7	0.9	20.5
Aluminum	Al	8.1	0.8	6.2
Iron	Fe	5.0	0.5	1.9
Calcium	Ca	3.6	1.0	1.9
Sodium	Na	2.8	1.2	2.5
Potassium	K	2.6	1.5	1.8
Magnesium	Mg	2.1	0.3	1.4
All other elements		1.5	 ,	

Common rock forming minerals

- Quartz
- K feldspar = orthoclase
- Plagioclase
- Hornblende
- Mica
- Calcite

Silicon Oxygen tetrahedron

1 silicon, Shares an electron 4 oxygen C with each of four ■ SiO₄ neighboring atoms С C С С (a)

A Arrangement of atoms in silicon-oxygen tetrahedron B Diagrammatic representation of a silicon-oxygen tetrahedron

Silicate minerals

- Constructed of SiO₄⁼ tetrahedra that share 0 to 4 of their corners with other tetrahedra
- With all shared, we get SiO₂ (quartz) a "framework" silicate (3-d connections)
- With fewer shared or with some Al⁺³ for Si⁺⁴ we need to charge balance with other ions typically these are Na, K, Mg, Ca, Fe, Al, H
- With fewer than 4 corners shared we get sheet, double chain, single chain & ortho silicates
- similar relationships apply in silicate melts

 The main groups of silicate units that make up most silicate minerals — different amounts of polymerization

□ isolated, single & double chain, sheet, framework

 We now look at these groups along with their related physical properties

Single chains

Ŋ8

Physical properties

- Luster
- Cleavage
- Hardness
- Crystal form
- Color
- Streak
- fizz

Tools for Mineral Identification and Study

- Hand lens
- Petrographic microscope
- X-ray diffraction
- Electron microscopy
- Microbeam analysis
 - \mathbf{O}

Cleavage, fracture

- Cleavage = ability of a mineral to break along preferred planes
- Fracture = the way a substance breaks when it is not controlled by cleavage – irregular surfaces (not planes)

Mohs hardness scale

Copyright © McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Mohs' Hardness Scale

- 1. Talc
- 2. Gypsum Fingernail
- 3. Calcite Copper coin
- 4. Fluorite
- Apatite
 Knife blade
 Glass

- 6. Feldspar File
- 7. Quartz
- 8. Topaz
- 9. Corundum
- 10. Diamond

streak

- Color of a pulverized substance
- Obtained from rubbing a mineral on an unglazed procelain tile
- Ex. distinctive reddish brown streak
 - hematite

Chemical make-up of the solid Earth

- Good to know major elements in core, mantle, crust (hint, hint...)
- These (+ H, C) are the building blocks of the common minerals that make up most rocks — the "rock-forming minerals" 58

 Galena (lead sulfide) and halite (common salt, sodium chloride) have the same crystal structures; thus, similar forms and cleavages (why might other properties differ?)

External characteristics of crystals

- Regular geometry of crystals symmetry
 - Crystal "faces" (growth surfaces)
 - Physical properties (e.g., cleavage planes of breaking)
- Both reflect the underlying crystal structure

- Angular relationships are key distinguishing features--not relatives sizes, elongation, etc.
- Halite 90 degrees: cubic
- Quartz 120 degrees: hexagonal

в

Photo by C. C. Plummer

Copyright @ McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Copyright @ McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Copyright @ McGraw-Hill Companies, Inc. Permission required for reproduction or display.

ou le refraction

Double refraction

Photo by C. C. Plummer

Copyright © McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Table 2.2Minerals of the Earth's Crust			Other common re-	ek forming minorala	
Name	Chemical Composition	Type of Silicate Structure or Chemical Group	Silicates Olivine	Mg, Fe silicate	Isolated silicate
The most common rock-forming minerals. (These make up more than 90% of the Earth's crust.)			Garnet group Clay minerals	Complex silicates Complex Al	Isolated silicate Sheet silicate
Feldspar group Plagioclase	Ca and Na Al silicate	Framework silicate	group Nonsilicates	silicate hydroxides	
Potassium feldspar (orthoclase, microcline)	K Al silicate	Framework silicate	Calcite Dolomite Gypsum	$CaCO_3$ CaMg (CO ₃) ₂ CaSO ₄ . 2H ₂ O	Carbonate Carbonate Sulfate
Pyroxene group (augite most common)	Fe, Mg silicate (some with Al, Na, Ca)	Single-chain silicate	Much less common minerals of commercial value.		
Amphibole group (hornblende most common)	Complex Fe, Mg, Al silicate hydroxide	Double-chain silicate	Halite Diamond	NaCl C	Chloride Native element
Quartz	Silica	Framework silicate	Gold	Au (gold)	Native element
Mica group Muscovite	K Al silicate	Sheet silicate	Hematite	Iron oxide (Fe ₂ O ₃)	Oxide
Biotite	K Fe, Mg Al silicate hydroxide	Sheet silicate	Magnetite Chalcopyrite	From oxide (Fe $_3O_4$) Cu, Fe sulfide	Oxide Sulfide
			Sphalerite	Zn sulfide	Sulfide
			Galena	Pb sulfide	Sulfide

A DESCRIPTION OF TAXABLE PARTY.

122.07

